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The trackway of a swimming theropod (ichnogenus Characichnos) is reported from the Lower Cretaceous Feitianshan Formation 
of Sichuan, China. These swim tracks help confirm that non-avian theropods were capable of forging moderately deep bodies of 
water. The trackway occurs on the same surface as a typical walking trackway of a sauropod (ichnogenus Brontopodus). Both 
occurrences are the first reported from the Cretaceous of Sichuan, and the swim tracks are the first well-preserved example of a 
Characichnos trackway from China. Additionally, a theropod walking trackway and several ornithopod walking trackways (simi-
lar to the ichnogenus Caririchnium) occur in the same horizon. The ornithopod trackways show a parallel orientation, suggesting 
gregarious behavior of the trackmakers, which may have been iguanodontiforms and/or hadrosauriforms. The co-occurrence of 
theropod swim tracks and theropod walking tracks suggests a fluctuation of water depth within a distinct time span.  
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Fossil tracks attributed to swimming tetrapods are substrate 
traces left by organisms as they propelled themselves through 
water. Although somewhat rare, fossil “swim” or swim tracks 
are attributed to a variety of vertebrates, including dinosaurs, 
crocodylomorphs [1], fish [2], pterosaurs [3], and turtles [4]. 
Swim tracks provide unique insight into the behavior of 
ancient vertebrates in aquatic environments, but are often 
controversial and difficult to interpret, because they usually 
display irregular morphologies [5]. Among dinosaurs, non- 
avian theropod swim tracks are the least controversial, and 
examples have been discovered in England [6], Poland [7], 
USA [5], and Spain [8]. 

In September 1991, mining operations at Sanbiluoga 
(“Sanbi” is the last name for the local residents, “luoga” 
meaning walled or fort) copper mine, Sanchahe Township, 
Zhaojue County, Sichuan Province (Figure 1), exposed a 
large (approximately 1500 m2) assemblage of dinosaur 
tracks (tracksite I: 27°51′22.70″N, 102°40′56.65″E). In De-
cember 2004, Jiefang Ebi investigated this tracksite, which 
was found to include approximately 12 individual trackways. 
Unfortunately, continued mining operations during 
2006–2009 destroyed most of the tracksite. Initial analysis 
indicated that the track makers include sauropod and thero-
pod dinosaurs, and pterosaurs [9]. In June and October of 
2012, the primary authors of this paper investigated the re-
maining track surfaces and also found possible thyreophoran  
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Figure 1  Geographic map indicating the location (footprint icon) of the Zhaojue dinosaur footprint locality in Liangshan Yi Autonomous Prefecture, Si-
chuan Province, China.

and small ornithopod tracks, which will be described else-
where. The investigation team also discovered a second, 
pristine tracksite (tracksite II: coordinates) located 450 me-
ters southwest from tracksite I. Tracksite II includes a track-
way of a swimming theropod, an isolated theropod swim 
track and several trackways of walking theropods, sauropods, 
and ornithopods.  

1  Geological setting 

Tracksite I is an exposure of the Feitianshan Formation, a 
302–1090-m-thick unit of fluvial facies comprised of red 
clastic sediments. The Feitianshan Formation was first as-
signed to the Late Jurassic, but has since been identified as 
Early Cretaceous [10]. Dinosaur tracks yielded from the 
upper member of the Feitianshan Formation, which consists 
of non-uniformly thick alternations of mixed purplish-red 
and grayish-purple feldspar-quartz sandstone, purplish-red 
and brick-red calcareous siltstone and mudstone. The base 
is formed by a thick (174–828 m) layer of feldspar-quartz 
sandstone, which is rich in copper [10]1).   

The tracksite II exposure is an approximately 1000 m2 
sandstone bedding surface, with a steep (about 50°) north-
west dip. In addition to the vertebrate footprints, invertebrate 
traces are also preserved on the surface. Most common are 
vertical burrows (Scoyenia isp.) that indicate a non-marine 
shallow water environment. Mudcracks suggest a change in 

water depth and a short-term exposure to the air. Developed 
ripple marks are also widespread.  

2  Systematic ichnology 

2.1  Swim tracks attributable to the ichnogenus  
Characichnos 

Materials.  Nine complete natural molds of pes prints cata-
loged as ZJ-II-1.1–1.8, and ZJ-II-2.1 (Figures 2, 3 and Table 
1) (ZJ-II: Zhaojue Field, tracksites II). Two fiberglass molds 
of ZJ-II-1.1–1.2 (HDT.223–224, HDT: Huaxia Dinosaur 
Tracks Research and Development Center).  

Locality and horizon.  Upper Member of the Feitianshan 
Formation, Early Cretaceous. Sanbiluoxia tracksite II, Zhao-   
jue, Xichang City, Sichuan Province, China.  

Description and comparison.  Trackway ZJ-II-1 (Figures 
2 and 3) is composed of at least eight tracks. There is an-
other isolated track ZJ-II-2.1 near ZJ-II-1.1, which might be 
another track in the series, but which probably represents 
another trackway. The ZJ-II-1 tracks differ in morphology 
from other ZJ-II tracks. ZJ-II-1 and ZJ-II-2 consist of slender, 
tapering digit impressions, and lack any impressions made 
by the metatarsophalangeal regions. The absence of metatar-
sophalangeal region impressions is common in swim tracks 
[5,8]. Specimen ZJ-II-1.1 and ZJ-II-1.2 are the representa-
tive specimens at the ZJ-II tracksite. Both consists of three 
long slender, parallel (slightly S-shaped) digits, interpreted  

 
                       

1) Panzhihua Team, Sichuan Bureau of Geology and Mineral Resources. Sichuan Provincial Zhaojuial County sanbiluoga copper mine geological report. 
1993, 102 (internal publication).   
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Figure 2  Map with theropod swim trackway ZJ-II-1 at ZJ-II tracksite 
(illustrated by photography, map indicates the general track distribution, 
but not the real distances, among individual footprints). (a) Photographs; (b) 
schematic drawings. 

as scratch marks made on the sediment by the distal ends 
(claws or toe tips) of the trackmaker’s hindfeet. The digit III 
marks are longer and deeper, while the digits II and IV marks 
are shorter and shallower; digit II marks are always longer 
and deeper than digit IV marks. Elongated sand mounds are 
preserved at the posterior end of the ZJ-II-1.1 and ZJ-II-1.2, 
showing that substrate sediments were raked by the digits 
and pilled caudally. This configuration is a common feature 
of swim tracks [11], including those of theropods [8]. The 
morphological characteristics of the other ZJ-II-1 and ZJ-II-2 
tracks are basically consistent, but occasionally only one or 
two digit impressions are preserved.  

In all cases, the anterior portions of the impressions are 
deepest, and the traces become shallow posteriorly. These 
features indicate that the distal tip of the foot contacted the 
sediment initially and with the greatest impact force, and the 
foot was then lifted and as it moved posteriorly, propelling 
the animal forward [5,8].  

The ichnotaxa Characichnos (meaning “scratch mark”) 
from the Middle Jurassic Saltwick Formation of England [6] 
are dinosaur swim tracks of likely theropod affinities. Chara-
cichnos also attributed to theropod producers have also been 
identified in the Early Jurassic Zagaje Formation in Poland 
[7] and Moenave Formation at the St. George Dinosaur 
Discovery Site at Johnson Farm in southwestern Utah, USA. 
The St. George assemblage, comprising thousands of traces, 
is currently the largest and best-preserved collection of di-
nosaur swim tracks recorded [5]. Well-preserved swim tracks 
are also known from several smaller localities in southwest-
ern Utah in the Moenave and Kayenta formations [12–14]. 
Additional, though unnamed, theropod swim tracks are re-
ported from the Lower Cretaceous of Spain [8]. Hunt and 
Lucas adopted Characichnos as a label for the Characich-
nos ichnofacies which broadly subsumes any ichnofacies 
dominated by swim tracks, including Characichnos and 
other ichnotaxa [15]. This includes what they call the Hatch-
erichnus ichnocoenosis (Hatcherichnus ichnofacies of Lock-
ley et al. [16]), which is characterized by swim tracks such 
as Hatcherichnus with different, often tetradactyl morphol-
ogies, attributed to crocodylomorphs or other tetrapods). 
Such swim tracks occur in large assemblages in the Dakota 
Group [16,17]. Distinguishing between tracks made by dif-
ferent tetrapod groups is not always easy.  

Xing et al. [18] reported five possible theropod swim 
tracks from the Upper Jurassic-Lower Cretaceous Tucheng-
zi Formation of Chicheng County, Hebei Province, China. 
In overall morphology, these tracks are similar to Chara-
cichnos, but the tracks were isolated and poorly preserved. 
The characteristics of the ZJ-II theropod swim tracks are 
consistent with Characichnos in having three elongate and 
parallel epichnial grooves, the terminations of which are 
straight or sharply reflexed [6]. The ZJ-II theropod swim 
tracks are, therefore, assigned to Characichnos. However, it 
should be noted that the ZJ-II theropod swim tracks do not 
form subparallel trackways (as in the holotype of Chara-
cichnos). It is important to remember that current flow di-
rection (or a lack thereof) in relationship to animal travel 
direction can greatly modify overall swim track morphology 
[5]. 

2.2  Theropod tracks 

Materials.  Four complete natural molds of pes prints con-
stituting a trackway and are cataloged as ZJ-II-3.1–3.4 Two 
replicated molds of the tracks are stored at the Huaxia Di-
nosaur Tracks Research and Development Center (HDT), 
where they are cataloged as HDT.225–226 (correspond to  
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Figure 3  Photographs and outline drawing of theropod swim trackway ZJ-II-1 and ZJ-II-2.  

Table 1  Measurements (in cm) of the dinosaur tracks from Sanbiluoxia tracksite IIa) 

Number R/L ML MW LD II LD III LD IV II-III III-IV II-IV PL SL PA L/W 

ZJ-II-1.1 L 46.1 19.5 31.9 31.0 31.0    138 280 166° 2.36 

ZJ-II-1.2 R 40.9 18.9 29.9 30.1 21.6    144 271 156° 2.16 

ZJ-II-1.3 L 44.4 19.2 17.7 28.8 14.9    134   2.31 

ZJ-II-1.4 R 54.5  23.4 46.8 >8.6       

ZJ-II-1.5 L 46.3  27.6 30.5 11.8       

ZJ-II-1.6 R 42.0 15.9 20.4 37.7 15.0       

ZJ-II-1.7 L >21.2  10.3 >21.2        

ZJ-II-1.8 R >29.4  26.3 29.6 17.8       

ZJ-II-2.1  21.5 14.3          

ZJ-II-3.1 L 21.4 18.8 8.1 11.9 6.0 42° 33° 75° 83 178 146° 1.14 

ZJ-II-3.2 R 23.3 18.7 8.9 12.7 7.4 31° 36° 67° 103 180 137° 1.25 

ZJ-II-3.3 L 24.1        90   
ZJ-II-3.4 R 20.8 16.9          1.23 

ZJ-II-4.1m R         90 161 118° 
ZJ-II-4.1p R         91 160 121° 

ZJ-II-4.2m L 13.0 28.5       95 154 117° 0.46 

ZJ-II-4.2p L 42.0 33.0       96 157 114° 1.27 

ZJ-II-4.3m R 14.5 22.5       89   0.64 

ZJ-II-4.3p R 43.5 32.0       88   1.36 

ZJ-II-4.4m L 14.5 28.0          0.52 

ZJ-II-4.4p L 42.0 34.5          1.22 

ZJ-II-5.1 R 23.0 19.3 15.1 11.0 13.1 32° 28° 60° 99 153 147° 1.19 

ZJ-II-5.2 L 24.3 17.6 14.3 9.4 12.5 25° 21° 46° 60 152 150° 1.38 

ZJ-II-5.3 R 24.2 16.4 12.8 10.0 13.0 22° 18° 40° 97   1.48 

ZJ-II-5.4 L 25.3 20.9 12.7 12.2 >9.9 25° 27° 52°    1.21 

ZJ-II-7.7 R 18.2 22.4 9.3 11.3 12.8 45° 40° 85° 77 147 161° 0.81 

ZJ-II-7.8 L 20.6 26.5 15.6 10.0 9.0 25° 65° 90°    0.78 

ZJ-II-8.7 R 28.7 23.2 >9.3 15.4 >10.8 23° 30° 53° 71 143 160° 1.24 

a) R/L: Right/left; LD I: length of digit I; LD II: length of digit II; LD III: length of digit III; LD IV: length of digit IV; ML: maximum length; MW: 
maximum width*; PA: pace angulation; PL: pace length; SL: stride length; II-III: angle between digits II and III; III-IV: angle between digits III and IV; 
II-IV: angle between digits II and IV; L/W: maximum length/maximum width. The “m” and “p” in the catalogue numbers refer to manus and pes imprints, 
respectively. * Dinosaur tracks measured as distance between the tips of digits II and IV.   
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ZJ-II-3.1–3.2). 
Locality and horizon.  Same as in section 2.1 above. 
Description and comparison.  Trackway ZJ-II-3 consists 

of four consecutive theropod tracks. The inferred walking 
direction of the trackway is tangential to the crests of the 
preserved ripples on the surface of the tracksite. Among the 
tracks, ZJ-II-3.1 and ZJ-II-3.2 (left and right prints respec-
tively, Figure 4, Table 1) are the best preserved, and, be-
cause of their position low on the slope, they are the easiest 
to access. The mean length/width ratio, as calculated from 
ZJ-II-3.1–3.2 is 1.2:1.  

Track ZJ-II-3.1 serves as an example of the tracks’ mor-
phology. Digit III projects the farthest anteriorly, followed 
by digits IV, and II. Due to the soft, wet sediments in which 
the tracks were made, and exposure to later weathering and 
disturbance by vegetation, the track morphology is unusual. 
It exhibits extramorphological, substrate-based features ra-
ther than reflecting true track maker pedal morphology.  
There are no discernible pad impressions; however, each 
digit has a sharp claw mark. Evidence for sediment collapse 
(slumping of mud back into the depressions) was observed 
in each digit trace, especially digit III and IV. Ridge-like, 
V-shaped backfill deposits are observable in the middle of 
digit III. The digits have wide divarication angles; the angle 
between digits II and III is greater than that between digits 
II and IV. Distinct, convex borders demarcate the metatar-
sophalangeal region and part of metatarsal pad. The proxi-
mal part of the metatarsal (“heel”) impression is deeply 
concave. The rest of the heel impression is indistinct, but a 
13.3 cm-long impression remains, which is probably the 
trace of the heel impression collapsed by the sediments. 

Such track preservation is not rare. Similar preservation 
is seen at the Lower Cretaceous Glen Rose tracksite from 
Texas, USA [19], and the mid-Cretaceous Wotoushan For-
mation Baoyuan tracksite from Chishui, China [20]. The ZJ- 
II theropod tracks are most similar to the Baoyuan theropod 
tracks, especially in terms of the demarcation between the 
metatarsophalangeal region and the metatarsal pad (such as 
BYA3) and their mutual wide divarication. Wide digit 

divarication angles are characteristic of Kayentapus [21–24]. 
Employing the method of Weems [25] to discriminate Kayen-   
tapus footprints at the ichnospecific level [7,22,24], the di-
mensional ratios of ZJ-II-3.1 are: te/fw=0.43 and (fl-te)/fw= 
0.64 (where te=toe extension, fw=footprint width and fl= 
footprint length); the ratios of ZJ-II-3.2 are: te/fw=0.48 and 
(fl-te)/fw=0.73. Thus, they fall inside the known range of 
Kayentapus, and are most similar to K. soltykovensis [20]. 
However, the metatarsophalangeal region of each footprint 
is much larger than in typical Early Jurassic theropod tracks 
and, together with widely divaricated digits and the V- 
shaped proximal track area, resembles the ichnogenus Ire-
nesauripus Stenberg, 1932 [26], which is widely distributed 
in Early Cretaceous (and early Late Cretaceous) assemblages 
[20,27–29].  

2.3  Sauropod tracks 

Materials.  Twelve natural molds of manus-pes pairs con-
stituting a trackway, and cataloged as ZJ-II-4.1–4.12 (Fig-
ures 5 and 6, Table 1). 

Locality and horizon.  Same as in section 2.1 above. 
Description and comparison.  The ZJ-II-4 trackway is 

clearly wide-gauge. The inner trackway width, measured 
from the inside margin of the pes, is approximately 19 cm. 
The manus impressions lie slightly anteromedial to the pes 
impressions. Length/width ratios of the manus impressions 
range from 0.46 to 0.64. The manus impressions are oval. 
Impressions of digits, claws, and the metacarpophalangeal 
region are indistinct. The manus impressions are rotated 
approximately 14° outward from the trackway axis, nearly 
equal to the outward rotations of the pes impressions (about 
10°). The pes impressions are oval. The metatarsophalange-
al pad region is smoothly curved. Length/width ratios of the 
pes impressions range from 1.22 to 1.36.  

Most Chinese sauropod tracks are from Cretaceous depos-
its, such as the Yongjing track site, Gansu Province [30,31] 
and the Chabu track site, Inner Mongolia, China [32]. Most 
sauropod trackways from China have been referred to  

 

Figure 4  ZJ-II theropod footprints ZJ-II-3.1 and ZJ-II-3.2. (a) and (c) Photographs; (b) and (d) outline drawings.  
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Figure 5  Outline drawing of ZJ-II sauropod tracks. 

 

Figure 6  Sauropod trackway ZJ-II-4 (a) adjacent and parallel to theropod 
swim trackway ZJ-II-1 (b). 

Brontopodus [32], though a few individual tracks have been 
referred to as Parabrontopodus-like [33]. The ZJ-II sauro-
pod tracks are most similar to Brontopodus based on the 
following features: wide (or sub-wide) gauge, high hetero-
pody, and pes prints longer than broad [34–36]. However, 
the manus prints of the ZJ-II sauropod tracks are cres-

cent-shaped, a feature characteristic of some Parabronto-
podus-type tracks [35,36].  

2.4  Ornithopod tracks 

Materials.  At least forty complete natural molds of pes 
prints (Figure 7, Table 1) constituting seven trackways. 
However, most of the trackways are preserved high on the 
steep slope of the exposure, making the tracks difficult to 
access. The lower prints are cataloged as ZJ-II-5.1–5.4, 
ZJ-II-6.1–6.7, ZJ-II-7.1–7.8 and ZJ-II-8.1–8.8.  

Locality and horizon.  Same as in section 2.1 above. 
Description and comparison.  The ornithopod trackway 

ZJ-II-5 (Figure 7(a)–(e)) is approximately 180 cm away 
from the ZJ-II-3 theropod trackway, and both show the 
same walking orientation. The three ornithopod trackways 
ZJ-II-6, ZJ-II-7, ZJ-II-8, share the same walking orientation. 
Only the tracks low on the exposure were measured: ZJ-II- 
7.7 (Figure 4(f)), ZJ-II-7.8 (Figure 4(g)) and ZJ-II-8.7 (Fig-
ure 4(h)). As with the theropod tracks, the ornithopod tracks 
exhibit extramorphological, substrate-based features rather 
than reflecting track maker pedal morphology. The mean 
length/width ratio calculated from ZJ-II-5 is 1.32:1. Among 
the tracks, ZJ-II-5.1 is the best preserved.  

In ZJ-II-5.1-4, digits II and IV are subequal in length, but 
digit II has a sharper claw mark, in 5.2-4 although otherwise 
digits II and IV are similar in morphology: the outline of 
each digit is ovoid and bears a prominent, but mediolateral-
ly narrow, claw impression at the anterior end. Digit III is 
slightly shorter than digits II and IV, but protrudes farther 
anteriorly and is broadly U-shaped at its distal part. The 
metatarsophalangeal pad of the ZJ-II-5.1 is indistinct; in 
other specimens of this trackway, the impression is more 
pear- or teardrop-shaped. Due to the soft and wet sediments 
in which the tracks were made, metatarsophalangeal pad of 
the ZJ-II-5.1 lacks a distinct border separating the impres-
sion from those of digits II and IV. In other specimens of 
this trackway, a clearer border is observable. The divarica-
tion angles between digits II and III and between digits III 
and IV are approximately equal. The ZJ-II-5 trackway re-
veals no manus impressions. 

ZJ-II-7.7, ZJ-II-7.8 and ZJ-II-8.7 are more seriously de-
formed. ZJ-II-7.8 preserves an ovoid to subrectangular im-
pression between the impressions of pedal digits III and IV. 
This could be a manus trace. ZJ-II-8.7 is preserved in a 
manner common to ornithopod tracks at the tracksite: it is a 
shallow track forming a round depression, with the distal 
ends of digits II–IV discernible, while the metatarsophalan-
geal region is indistinct, and the axis of the foot (digit III) 
shows pronounced inward rotation from about 20°–25°. 

The ZJ-II ornithopod tracks show typical quadripartite 
track morphology (i.e. three digital impressions and one 
heel pad). They resemble (in terms of overall morphology 
and the specific length/width ratio and the divarication an-
gles between the digits) the trackways that have been named  
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Figure 7  Outline drawings of ZJ-II ornithopod tracks and the photograph of ZJ-II-5.1. 

Caririchnium. Caririchnium may have been made by either 
bipeds or quadrupeds [37] and is a common ichnogenus, 
typically attributed to iguanidontiforms and hadrosauri-
forms and widely distributed across North America [38–41]. 
Caririchnium has also been reported from Brazil [42], Ko-
rea [43], Japan [44], and China [37,45].  

Caririchnium lotus from Chongqing includes presumed 
adult tracks (tracks 37–40 cm in length), subadult tracks 
(25–30 cm in length), and tracks of young individuals 
(19–23 cm in length) [37]. The ZJ-II ornithopod tracks are 
similar to subadult Caririchnium tracks in size. However, 
the poor preservation of the tracks, attributable to the wet 
and slippery sediments in which they were made, limits 
further comparison. 

3  Paleoecological implications 

3.1  Water depths 

The trackway of the walking sauropod and the swimming 
theropod occur on the same surface. This co-occurrence has 
several potential implications. Either the trackways were 
made at different times, when the water depths were differ-
ent, or at the same time when the water depth was more or 
less the same. Assuming a foot length/hip height ratio in the 
range of 4.0–5.9 for a sauropod [46,47], and a ratio of 4 for 
large theropods [4,48], the hip height of the ZJ-II-4 sauro-
pod track maker would have been approximately 1.7–2.5 m, 
and the ZJ-II-3 theropod track maker hip height would have 
been approximately 0.9 m. 

The width of theropod swim tracks ZJ-II-1 (average 19.2 
cm, ZJ-II-1.1–3) is nearly equal to that of the walking the-
ropod tracks ZJ-II-3 (average 18.8 cm, ZJ-II-3.1–2). ZJ-II-1 
and ZJ-II-3 are, therefore, assumed to have been made by a 
track maker of similar-size. At the time the theropod swim 

traces were made, the water depth must have been roughly 
equivalent to the  hip height of the theropod track maker 
(i.e. approximately 0.9 m), because while swimming, the 
kicking motion would register tracks at full leg/digit exten-
sion [6,49]. The co-occurrence of walking tracks made by a 
theropod of roughly equivalent size affirms that the water 
depth was not consistent throughout the history the tracksite. 
Further, the presence of mud cracks records the aerial ex-
poser of the substrate and the disappearance of water from 
the site’s environment completely.  

The sauropod track maker is estimated to have well ex-
ceeded the theropod trackmakers in hip height and to have 
been tall enough to wade through 0.9 meters of water. Thus 
it is possible that the sauropod tracks were made under the 
same approximate conditions as either the theropod swim 
tracks or the theropod walking tracks.  

The orientation of the ZJ-II-1 theropod trackway is ori-
ented northwest to north. However, unlike the case reported 
by Ezquerra et al. [8] there are no independent indicators to 
help infer the direction of the current relative to the motion 
of the track maker. 

3.2  Ornithopod herd 

The ZJ-II ornithopod trackways ZJ-II-6, ZJ-II-7, and ZJ-II-8 
all follow parallel paths (the inter-trackway spacing ranges 
from 0.8 m to 1.3 m). In this way, they are similar to nu-
merous other ornithopod tracksites that have been inter-
preted as recording possible evidence of herding behavior, 
such as at sites like the Lower Cretaceous Dakota Group 
Dinosaur Ridge tracksite in Colorado, USA [50], the Lower 
Cretaceous Hekou Group No.6 (ornithopod) tracksite from 
Gansu, China [31], and the Lower Cretaceous Jiaguan For-
mation lotus tracksite from Chongqing, China [37]. All 
tracks comprising ZJ-II-6, ZJ-II-7, and ZJ-II-8 are equally 
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deep and, based on footprint dimensions, all the track mak-
ers were roughly similar in size, and this likely indicates 
that the trackways were made under similar conditions and 
conceivably at the same time. The trackways potentially 
record the passing of a hadrosauriform herd moving east, 
and the inter-trackway spacing ranges from 0.8 to 1.3 m. 
Ornithopod trackways at this site may therefore indicate 
gregarious behavior. 

3.3  Cretaceous sauropod tracks from Sichuan 

The dinosaur track record from the Cretaceous Sichuan Ba-
sin is dominated by theropods and ornithopods [20]. Rare 
bird tracks [51] have also been discovered. The discovery of 
sauropod footprints at ZJ-II is the first record of sauropod 
tracks from Cretaceous Sichuan. The wide-gauge stance of 
the Brontopodus-type trackways suggests that the tracks 
were those of titanosaurian sauropods [32,52], and scattered 
titanosaur fossils have been unearthed in Qianjiang District, 
Chongqing [53]. The sauropod trackway follows the same 
orientation as the theropod trackways. This situation is not 
uncommon (the most famous example is the purported and 
much debated theropod-sauropod “chase sequence” from 
the Lower Cretaceous Glen Rose Formation Glen Rose track-
site of Texas, USA [54]). Regardless, the Zhaojue track-
ways are the first time that theropod swim tracks have been 
found on the same surface as tracks of a walking sauropod.  
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