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Abstract: Three-dimensional tracks provide unique insights into the locomotor mechanics of their
track makers. An isolated, large hadrosauriform print attributable to Caririchnium lotus from the
“mid”-Cretaceous Lotus track site (Jiaguan Formation) in China permits reconstruction of the
footfall, weight-bearing, and Kkick-off phases of the step cycle. Large-scale modifications of the pes
during the step cycle indicate C. lotus trackmakers were capable of locomotory modifications in
response to substrate consistency beyond the “expected” shift between bipedal and quadrupedal
postures. An unusual curvature to the trace of one of the outer digits indicates substantial transverse
mobility. The remaining digits demonstrate lesser degrees of transverse movement accompanied by
extension of the digits during footfall. The absence of overprinted scale-scratch marks and toe drags
are consistent with a vertical kick-off of the pes and concomitant flexion of the digits. This track
suggests that pedal mobility in C. lotus track makers was greater than previously suspected and has

implications for reconstructions of hadrosauriform locomotion.
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1 Introduction

Fossil trackways typically occur as roughly two-
dimensional impressions on bedding planes and provide
information about the identities and paleobiologies of the
track makers. Track relief may be either positive or
negative, but is usually limited to a matter of millimeters
or centimeters. Of the thousands of fossil trackways
known, deep, three-dimensional tracks are relatively rare
and difficult to define. In general, three-dimensional tracks
are noticeably deeper (decimetres) than common cast
tracks and are occasionally accompanied by scale scratch
lines (Difley and Ekdale, 2002). Three-dimensional tracks
have been described for ceratopsids and hadrosaurids
(Difley and Ekdale, 2002; Currie et al., 2003), sauropods
(Milan et al., 2005; Platt and Hasiotis, 2006; Mateus and
Milan, 2008), and theropods (Gatesy et al., 1999; Milan et
al., 2006; Avanzini et al., 2011). Some load cast features
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with undefined morphologies have also been interpreted as
deep sauropod tracks (Lockley, 2001; Hasiotis, 2004; Li et
al., 2011). Most importantly, well-preserved, three-
dimensional tracks provide reliable records of the footfall,
weight-bearing, and, less frequently, the kick-off phases of
the step cycle of their track makers. Such traces can also
be used to infer locomotor mechanics of the track makers
(Thulborn and Wade, 1984; Milan et al., 2005).

In 2006, the Qijiang County Bureau of Land and
Resources in Chongqing and the Southeast Sichuan
Geological Team discovered dinosaur tracks within the
“mid”-Cretaceous Jiaguan Formation that crops out on
Laoying Mountain, near the town of Sanjiao, Qijiang
County. Xing et al. (2007) attributed these tracks to
hadrosaurids (Laoyingshanpus torridus and Caririchnium
lotus), ankylosaurids (Qijiangpus sinensis), and the small
theropod Wupus agilis. In 2009, the senior author located
several new track-bearing layers from the same tracksite,
including three-dimensional tracks.

Only three other examples of three-dimensional tracks
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Fig. 1. Geographic map indicating the location (footprint
icon) of the Lotus track site locality in Qijiang County,
Chonggqing City, China.

have been previously discovered in China, none of which
have been described. These include: (1) sauropod tracks
from the Early Cretaceous Chabu track site, Inner
Mongolia (Li et al.,, 2011); (2) an isolated but well-
preserved sauropod manus Early
Cretaceous of the Yongjing track site, Gansu (which will
be described elsewhere); and (3). Sauropod (?) tracks from
the “mid”-Cretaceous Emei track site, Sichuan (Lu et al.,
in press). The purpose of this study is to describe the
hadrosauriform track locomotory
implications of this trace. The aforementioned sauropod
tracks will be described elsewhere.

track from the

and discuss the

2 Institutional Abbreviations

QJGM, Exhibition Hall of Qijiang County Bureau of
Land and Resources, China; TMP, Royal Tyrrell Museum
of Palacontology, Drumheller, Alberta, Canada.

3 Locality and Geological Setting

Qijiang Petrified Wood and Dinosaur Footprint
National Geological Park is located in Qijiang County,
south of Chongqing Municipality near the southeastern
border of the Sichuan Basin (Fig. 1). Upper Jurassic
(Shangshaximiao, Suining, and Penglaizhen formations)
and “mid”-Cretaceous (Jiaguan Formation) rocks crop out
within the Park. Petrified wood (Coniferopsida) ( Liu et
al., 2010), theropod teeth (Wang Feng-ping, pers. comm.
2011), and sauropod remains (Mamenchisaurus Fauna;
Liu et al., 2010) are known from the Jurassic outcrops
within the Park; however, only dinosaur tracks have been
discovered in the Cretaceous Jiaguan Formation (Xing et
al., 2007).

Four track sites have been identified in fluvial facies of
the Jiaguan Formation. Tracks at these sites have been

attributed to small to medium-sized avian and non-avian
theropods, medium-sized to large ornithopods, and
ankylosaurians (Young, 1960; Zhen et al., 1994; Xing et
al., 2007, 2009, 2011). The Lotus track site is preserved
within dark magenta sandstones and mudstones (Fig. 2)
and comprises at least four track-bearing layers that
include shallow cast (positive, in-filled) and mold
(negative) type tracks as well as rare, deep, three-
dimensional tracks. The three-dimensional (cast) tracks
were impressed into fine-grained mud units that were in-
filled and overlain by sandy layers. The less resistant
mudstones are recessed relative to the bench-forming
sandstone units, permitting observation of cast traces on
the undersides of these benches.

Li (1995) suggested the Jiaguan Formation ranges
between 85—117Ma (Aptian—Santonian) based on electron
spin resonance (ESR) dating; however, Gou and Zhao
(2001) considered an even longer span (Valanginian—
Santonian) based on totaled magnetochronology and ESR
dating. Preliminary pollen assays recovered relatively
abundant species comparable to extant angiosperm pollen,
such as Betulaceae, Cyrillaceae, Fagaceae,
Hamamelidaceae, Juglandaceae, Labiatae, Meliaceae,
Nyssaceae, Rutaceae, Symplocaceae, and Ulmaceae,
typical of Campanian-Maastrichtian assemblages (Wang
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Fig. 2. Stratigraphic column of the Jurassic—Cretaceous
strata of the Lotus track site.
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Fig. 3. A. Type specimen of Caririchnium lotus QJGM-T37-3; B. Distribution of Caririchnium lotus tracks in two layers at the
Lotus track site, including in situ natural molds tracks (black arrow) and three-dimensional, natural cast track QJGM-C1 in
overlying sandstone (white arrow). Scale=10 cm.

Wei-ming pers. comm. 2011). Pending detailed
palynological analysis, and following Li (1995) and Gou
and Zhao (2001), we regard the Jiaguan Formation as

“mid”-Cretaceous.
4 Distribution of Tracks

4.1 Caririchnium at the Lotus track site

Caririchnium ichnogenus typically
attributed to hadrosauriform and widely distributed across
North America, a including Colorado (Lockley, 1987),
New Mexico (Hunt and Lucas, 1996; Kappus et al., 2003),
Oklahoma (Lockley et al., 1992), Texas (Lee, 1997),
Virginia (Weems, 2004), and Wyoming (Lockley et al.,
2004). Caririchnium has also been reported from Brazil
(Leonardi, 1984), Korea (Huh et al, 2003), Japan
(Matsukawa et al. 2005), and China (Xing et al., 2007).
Other  typical  hadrosauriform  tracks  include
Amblydactylus (Sternberg, 1932; Currie and Sargeant,
1979), and Hadrosauropodus (Lockley et al., 2003); rarer
ichnotaxa include Jiayinosauropus (Dong et al., 2003;
Xing et al.,, 2009) and Ornithopodichnus (Kim et al.,
2009) from China and Korea, respectively. The
overwhelming majority of hadrosauriform tracks are
simple molds and casts, whereas deep, three-dimensional
tracks are considerably less common.

The Lotus track site preserves nearly 200 symmetrical,
tridactyl Caririchnium lotus tracks (Fig. 3A, Table 1),
which include adults (tracks 37-40 cm in length),

iS a common

Table 1 Measurements (in cm) of Caririchnium lotus tracks
from the Lotus track site

Specimen # ML MW 1II 111 v Me L/'W
QJGM-T37-3 387 285 200 170  20.0 195 1.36
QIJGM-T100-1 | 33.5 240 189 143 148 >11.8 140
QIGM-C1 425 347  263*% — — 18.9 1.22
QJGM-C2.8 322 264 187 159 148 11.0 1.22

L/W: Maximum length/maximum width; ML: Maximum length; MW:
Maximum width, distance between the tips of digits II and IV; II: Length of
digit II; TII: Length of digit III; IV: Length of digit IV; Me: Length of
metatarsophalangeal pad.*This may be either digit IT or IV.

subadults (25-30 cm in length), and young individuals (19-
23 cm in length). The length:width ratio of the holotype
specimen, QJGM-T37-3, an adult pes print, is 1.36:1.
Despite the range of sizes present, track morphology is
consistent. Digits II and IV are subequal in length, and
essentially identical in morphology: the outline of each
digit is ovoid and bears a prominent, but mediolaterally
narrow, claw impression at the anterior end. Digit III is
slightly shorter than digits II and IV, but protrudes farther
anteriorly than these, and is broadly U-shaped at its
anterior end. The metatarsophalangeal pad of the type
specimen is shaped like a clover-leaf with the edges of the
“leaves” corresponding to the base (i.e., proximal part) of
each digit; in other specimens at the site, however, the
impression is more pear- or teardrop-shaped. The posterior
margin of the metatarsophalangeal pad is slightly concave,
and a distinct border separates the impression from those
of digits II and I'V. The divarication angles between digits
IT and II and digits III and IV are both 25°. Ovoid to
subrectangular manus impressions lie in front of the
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impressions of pedal digits IIT and IV (Xing et al., 2007).

Impression tracks of Caririchnium lotus are most
common on bedding planes at the Lotus track site (Fig.
3A, Table 1), although infilled tracks (Figs. 4-6, Table 1)
are also present on the undersides of overlying, bench-
forming sandstone layers. Shallow cast tracks are
relatively common and occur as isolated prints (Fig. 4) or
in complexly overprinted series made by multiple
individuals travelling in a variety of directions (Fig. 5).
Invertebrate traces are common on the ventral (i.e.,
plantar) surfaces of cast tracks. At least one cast track
shows digit III impressed considerably deeper than digits
IT and IV, a phenomenon that has been observed in some
other hadrosaurid tracks (Currie et al., 2003: fig. 4B, D).

Caririchnium and Amblydactylus have been attributed
to both iguanodontids and hadrosaurid track makers
(Sternberg, 1932; Currie and Sarjeant, 1979; Currie, 1983;
Paul, 1987; Lockley, 1985, 1986, 1987; Lee, 1997);
however, the absence of skeletal material from the Jiaguan
Formation hampers potential identification of the track
maker(s). An often-used criterion for differentiating
between iguanodontid and hadrosaurid tracks is their
respective geological ages; the former were predominately
distributed in the early Early Lower Cretaceous, the latter
predominately distributed in the Late Cretaceous.
However, since those initial studies, understanding of
large ornithopod phylogeny has become substantially
clearer and more complex (e.g., McDonald et al.,2010a, b;
Prieto-Marquez, 2010). Hadrosauridae, as
understood, is exclusively a late Late Cretaceous clade
(Santonian—Maastrichtian); late Early and early Late
Cretaceous large  ornithopods are
Hadrosauriformes and  Hadrosauroidea, but not
Hadrosauridae. As far as is currently known, most of these
taxa would leave similar tracks, including Caririchnium. If
the late Late Cretaceous age of the Jiaguan Formation
suggested by the preliminary palynological analysis
(Wang Wei-ming pers. comm. 2011, they willto be
described elsewhere) is ultimately supported by more
detailed studies, then it is possible that the track maker
was a hadrosaurid sensu stricto. At present, however, the
C. lotus track maker (and the makers of Caririchnium
tracks in general) can only be referred safely to
Hadrosauriformes, though it may have been a
hadrosauroid.

currently

members  of

4.2 Three-dimensional C. lotus track

QJFM-C1 is an isolated, three-dimensional cast found
in situ on the underside of a resistant sandstone layer
within the Jiaguan Formation (Fig. 3B). The original track
remains in the field, where it is protected within the
Qijiang Petrified Wood & Dinosaur Footprint National

Fig. 4. Caririchnium lotus cast track (QJGM-T100-1) from the
Lotus track site. A: Photograph; B: Outline drawing. Gray ar-
eas indicate invertebrate traces. Scale bar = 10 cm.

Geological Park. A cast is preserved in the Exhibition Hall
of Qijiang County Bureau of Land and Resources, China.

The track has a maximum length of 42.5 cm and is 37.1
cm deep, which is nearly the thickness of the mudstone
layer in which the actual footprint (i.e., the natural mold)
was preserved made. The metatarsophalangeal region and
all three digits are preserved. As exposed, it is not possible
to differentiate between the medial and lateral digits; these
digits are referred to herein as digits A and C, with digit C
being the digit closest to, and still partly embedded in, the
mudstone outcrop. The trace of the metatarsophalangeal
region is columnar and vertically oriented (Fig. 6). There
is no defined margin between digit III and the
metatarsophalangeal pad plantarily, which is characteristic
of Caririchnium lotus. The vertical impression made by
digit IIT (Fig. 6) is 37.4 cm in height and angles
anteroventrally. Digit C (Fig. 6) measures 39.5 cm in
height and is partially obscured by rock. Its vertical axis is
anteroventrally oriented, parallel to that of digit III, giving
the entire print a somewhat trapezoidal outline in
mediolateral aspect (Fig. 6A, B). The trace of digit A (Fig.
6) is unusually curved, tracing a path 49.7 cm in height. In
anterior view, the digit trace bulges outward (away from
digit IIT) at mid-height. Ventral (plantar) to that point, it
curves dramatically inward to contact the ventral-most
part of the trace of digit III.

The surfaces of the digital and metatarsophalangeal
region traces of QJGM-C1 preserve elongate, parallel
scale scratch lines. The metatarsophalangeal region and
the curved trace of digit A have 3-4 scratch lines per
centimeter; digit Il has 2—3 scratch lines per centimeter.

5 Discussion
The morphology of the hadrosauriform pes deviates

from the plesiomorphic morphology seen in much of the
Dinosauria (Moreno et al., 2007). This relatively derived
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Fig. 5. Caririchnium lotus natural cast tracks (QJGM-C2.1-9)
from the Lotus track site. A: Photograph; B: Outline drawing.
Numerals 1-9 indicate nine discreet tracks. Black arrows indi-
cate the direction of advancement of the discernible tracks. Scale
bar=10 cm

condition (tridactyly, modification of the unguals
into hooves, phalanges wider and dorsoventrally
thinner than long, absence of collateral ligament
fossae, loss of sagittal ridge and tendon attachment
processes, and relatively flattened interphalangeal
articular surfaces) culminated in a subunguligrade
foot posture in hadrosaurids (Moreno et al., 2007).
Metatarsals II and IV diverge from metatarsal III,
apparently preventing the digits from coming into
contact with one another (Horner et al., 2004), and
the digits themselves have been interpreted as
relatively inflexible (Moreno et al., 2007). The

proximal and distal articular surfaces of
hadrosauriform pedal phalanges are roughly
trapezoidal in articular view and lack the

curvatures and  sagittal ridges/sulci  (i.e.,
ginglymous articular surfaces) seen in more basal
ornithopods such as  Thescelosaurus  and
Camptosaurus (Moreno et al, 2007); how
widespread these features are in non-hadrosaurid
hadrosauriforms is unclear. The consequent, more
upright (i.e., subunguligrade) stance corresponds

to an increase in the weight-bearing capacity of

the pes (Moreno et al. 2007).

Based on the track length (Table 1), the ornithopod
responsible for QJGM-C1 probably measured 2.3 m at the
hip (h=5.9 x foot length; Thulborn, 1990). Fine, parallel
striae on QJGM-CI1 and the lithology of the track-bearing
layer suggest the track maker stepped into wet but
cohesive mud (Nadon, 1993; Difley and Ekdale, 2002)
that maintained the integrity of the print after the track
maker had moved on. Parallel striae indicate that the pes
was covered in rough tubercles or scales approximately 3
mm in diameter (Gatesy, 2001; Milan et al., 20006;
Avanzini et al., 2011). This is corroborated by intact skin
impressions on the pedal skeletal material of some
hadrosaurid specimens (Osborn, 1912; Brown, 1914).
Irregularities, probably due to wear, on the leading edge of
the keratinous claw are presumably responsible for
parallel striae visible on the front of digit III.

The most striking feature of QJGM-CI1 is the strangely
curved path of digit A, which likely formed as a result of
transverse movement of the digit during the touchdown
and weight-bearing phases of the step. Other possible
explanations for the peculiarity of the track include soft-
sediment  deformation, slippage, or pathological
modification of the pes. Soft-sediment deformation is
dismissed based on the well-preserved and linear paths of
digit III and digit C as well as the preservation of fine
details such as scale scratch lines. Any wholesale, post-
depositional deformation would be expected to have

Digit‘C’

D Digit'A’ Digit 111

Fig. 6. Three-dimensional, natural cast Caririchnium lotus pes track
(QJGM-C1) from the Lotus track site. A and C: Photographs, B and D:
Outline drawings. Metatarsophalangeal (“heel”) trace in red; digit III
trace in green, and medial and lateral digits in blue and orange. A, B are
in lateral view; C, D are in anterolateral view. Scale bar = 10 cm.
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registered across the entire footprint, but this is not the
case. Slipping of the foot itself is discredited for the same
reason: nothing unusual was observed in the downward
passage of the other two digits or the metatarsophalangeal
region. Similarly, the scale scratch lines on the edges of
the metatarsophalangeal region remain parallel and
vertical for the entire height of the impression, indicating
that movement during the footfall occurred in a
predominantly vertical plane. Rarely-noted, abnormal
dinosaur footprints have been attributed to limping
individuals and the pathologic loss of digits (Lockley et
al., 1994; Tanke and Rothschild, 1998). Examples of
“bent” or unevenly spaced toes that result in unusual prints
have also been found (Ishigaki, 1986; Helm, 2008). Given
that the outline of QJGM-C1 conforms to the typical
morphology of Caririchnium tracks at the top of the cast
(i.e., when the foot first made contact with the substrate),
this trace does not reflect a pathologic digit.

Both the depth of the print and corresponding paths of
the digits of QJGM-CI1 provide rare insight into the
locomotor mechanics of the track maker. The vertical path
of the metatarsophalangeal region contrasts with the
anteroventrally-directed traces of digit III and digit C. This
discrepancy can be explained by assuming a gradual
outward and forward extension of the digits as the animal
transferred its weight on to the foot and as the digits met
resistance from the substrate. Large, extant graviportal
mammals—whose masses are within the estimated realm
of large ornithopods—experience similar phenomena
during footfall (Weissengruber et al., 2006, P. Bell pers.
obs.) in which elastic properties of the fatty cushion
ventral to the pedal skeleton permit the pedal surface area
to expand (Weissengruber et al., 2006; Miller et al., 2007).
Similarly elastic footpads are occasionally seen other
specialized, non-graviportal mammals, such as the
dromedary (Camelus dromedarius; Arnautovic and
Abdalla, 1969; Arnautovic, 1996). In such cases, the role
of the footpad is both to spread the load of the animal,
thereby = preventing  unnecessary  sinking  into
unconsolidated substrates, and to act as an energy absorber
(Arnautovic and Abdalla, 1969; Arnautovic, 1996; Miller
et al., 2007). That large ornithopods possessed similar foot
pads has been corroborated by both footprint and postural
studies, and the pads presumably acted in a similar fashion
(Moreno et al., 2007). Extension of the digits during the
down-step in QJGM-C1 is consistent with load-bearing
adaptations in extant, high-mass mammals; splaying of the
digits in QJGM-C1 therefore may have helped spread the
weight of the track maker, conferring better stability (and,
hence, increased locomotor efficiency) in the thixotropic
sediments at the Lotus tracksite. However, the exaggerated
curvature of digit A remains anomalous.

The absence of overprinted parallel striae (Difley and
Ekdale, 2002) or anteriorly-directed toe-drag marks
(Gatesy et al., 1999; Milan et al., 2005) imply that the
digits did not make contact with the surrounding
sediments during the kick-off phase of the step cycle. Any
horizontal component to the stride clearly did not take
place until the foot had been extracted from the deep track.
For this to have occurred, following the final part of the
load-bearing phase, the toes must have been curled
(flexed) as the foot was lifted vertically, such that they did
not make further contact with the surrounding substrate.
Similar vertical step cycles have been described from
isolated sauropod manus prints (Milan et al., 2005). The
isolated nature of QJGM-C1 (and the aforementioned
sauropod  prints) permit
characterization of the stride of the track maker, but
documents a single footfall and take-off in substrate with a
specific set of compositional and structural properties. The
sequence of this step in QJGM-C1 can be described as
follows:

(1) Initial contact of pes with substrate. Pes is in its
“normal” state, coinciding with the usual morphology of
Caririchnium lotus tracks (depth = 0 cm).

(2) As weight was transferred to the foot, the digits
began to splay outward as the “heel” pressed vertically
into the substrate; the divarication angle between digit A
and digit III reached its maximum at a depth of 16.5 cm.

(3) Below a depth of 16.5 cm, the divarication angle
between digit A and digit III reduces sharply as the digit
moves toward digit I1I, culminating in contact between the
two digits at a depth of 34.8 cm. Digit III and digit C
continue to extend outward (anteriorly and transversely).

(4) The pes is depressed further to a depth of 37.1 cm
with digits [l and A remaining in contact. Digits III and C
attain their maximum extension.

(5) The pes is retracted vertically without leaving
further impressions.

This interpretation of digital mobility (Fig. 7) paints a
picture of a hadrosauriform rather gingerly navigating a
thick muddy layer in a river floodplain. It contrasts with
the conventional picture of digital inflexibility of the
hadrosauriform pes (Moreno et al., 2007). The surprising
mobility of the digits in QIGM-CI1, particularly that of
digit A, indicate a greater degree of pedal flexibility than
previously thought, which has important implications for

unfortunately does not

the reconstruction of hadrosauriforms locomotion (Sellers
et al., 2009).

Moreover, it suggests Caririchnium lotus track makers,
and perhaps hadrosauriforms in general, were capable of
locomotory modifications in response to substrate
consistency beyond the “expected” shift between bipedal
and quadrupedal postures (Wilson et al., 2009).
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Fig. 7. Schematic of pedal mobility in Caririchnium
lotus as interpreted from QJGM-CI1. All three digits
combine transverse as well as anterior (extension/
flexion) movement relative to the metatarsophalangeal
region as the foot penetrated deeper into the substrate
(lighter shades of gray represent increasing depth).
Note how lateral digit A (right side of foot) moves to
contact digit III. “Normal” footprint silhouette (dark
gray) based on holotype QJIGM-T37-3.

6 Conclusions

Deep, three-dimensional tracks offer insight into the
locomotor mechanics of the trackmaker, including the
footfall, weight-bearing, and kick-off phases of the step
cycle. QJIGM-C1 is a three-dimensional hadrosauriform
track attributable to Caririchnium lotus from the ‘mid’
Cretaceous Lotus tracksite, south-central China. The track
demonstrates modifications in foot posture (extension and
increased divarification angle between the digits) took
place during the footfall, consistent with adaptations for
increased stability and load-bearing in response to
unconsolidated substrates. The pes was retracted from the
sediments without leaving further impressions, suggesting
the digits were flexed somewhat from their position in the
load-bearing phase, The track also demonstrates a high
degree of mediolateral mobility in at least one of the
digits, contradictory to the pedal osteology of the alleged
hadrsauriform trackmaker. These findings demonstrate
Caririchnium  lotus track makers, and perhaps
hadrosauriforms in general, were capable of locomotory
modifications in response to substrate consistency beyond
the “expected” shift between bipedal and quadrupedal
postures (Wilson et al., 2009).
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