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A B S T R A C T

Tetrapod ichnofaunas are reported from desert, playa lake facies in the Lower Cretaceous Luohe Formation at
Baodaoshili, Shaanxi Province, China, which represent the first Asian example of an ichnnofauna typical of the
Chelichnus Ichnofacies (Brasilichnium sub-ichnofacies) characteristic of desert habitats. The mammaliomorph
tracks, assigned to Brasilichnium, represent the first report of this ichnogenus from Asia. The assemblages also
contain three different theropod trackway morphotypes: one very wide Magnoavipes-like morphotype, one re-
latively wide, broad-toed, small Eubrontes-like form with short steps and strides, and wide straddle, and an
elongate morphotype (Sarmientichnus) with longer steps and narrower straddle representing a didactyl track-
maker, the latter being the first example of the enigmatic ichnogenus found outside its type area in Argentina.
The Sarmientichnus occurrence, the first in Asia, has important implications, demonstrating that the trackmaker
was not monodactyl, but didactyl with probable affinities to deinonychosaurians which are ichnologically well-
represented in the Lower Cretaceous of Asia. Although morphologically distinctive, Sarmientichnus should be
recognized as a “form” ichnotaxon compromised by suboptimal preservation. The combination of Brasilichnium
isp., Sarmientichnus isp., and tridactyl theropod tracks, indicates mammaliomoprhs and small theropods, and is
comparable to ichnofaunas from similar desert facies on other continents. Thus, Cretaceous desert ichnofaunas
from China are consistent with global ichnofacies predictions.

1. Introduction

Most tetrapod track assemblages from desert deposits are highly
distinctive and representative of dune ecology and paleoecology.
However, desert sedimentary facies, sensu lato, are variable typically
including both eolian, dune, and associated interdune or playa lake
facies, which are typically associated with localized flooding and the
deposition of ephemeral lake deposits. Krapovickas et al. (2016) for
example recognized three “desert landscape units”: i) eolian dunes,
interdunes and sand sheets, ii) wet interdunes, and iii) playa lakes.

Late Paleozoic through Cenozoic dune deposits are generally
dominated by tracks of arthropods (insects and arachnids), small rep-
tiles and mammals or protomammals. Ichnologists have remarked on

the similarities between Late Paleozoic, Mesozoic (Lockley et al., 1994;
Lockley and Hunt, 1995; Hunt and Lucas, 2007) and even Cenozoic
dune ichnofaunas (Lockley et al., 2007), which have been characterized
as the Chelichnus ichnofacies (Hunt and Lucas, 2007; Krapovickas et al.,
2016), and also as the Octopodichnus or Octopodichnus-Entradichnus
ichnofacies (Krapovickas et al., 2016). These two ichnofacies are es-
sentially synonymous (Lockley et al., 2007a, 2007b) and more or less
co-extensive with desert sand dune (erg) deposits. Thus, differences are
mainly semantic, the former using a label based on a vertebrate ich-
nogenus, the latter based on an invertebrate.

The generalized notion of desert, dune or eolian ichnofaunas and
ichnofacies may implicitly include local interdune subfacies in which
track assemblages may differ in composition: i.e., “interdune” implies
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within the larger dune or eolian systems (McKee, 1979). There are few
formations of predominantly eolian origin that are comprised entirely
of dune deposits, without some units of interdune origin (McKee, 1979).

Generally speaking Paleozoic expressions of the Chelichnus ichno-
facies, well represented in the western USA, are dominated, by the
tracks of small protomammals (synapsids) and arachnids (e.g., Lockley
et al., 1994) with rare lizard-like (lacertiform) tracks (Haubold et al.,
1995). Mesozoic examples of the Chelichnus ichnofacies, well re-
presented in North and South America, are characterized by relatively
abundant synapsid tracks (Brasilichnium), arachnid tracks and foot-
prints of small theropod dinosaurs (Lockley and Hunt, 1995; Hunt and
Lucas, 2007; Leonardi, 1981, 1994). These ichnofaunas have been
characterized as the Brasilichnium ichnofacies, (Lockley et al., 1994,
2004a; Lockley, 2007) which Hunt and Lucas (2007) regard as a subset
of the Chelichnus ichnofacies, labelled the Brasilichnium ichnocoenosis.
Cenozoic “eolian” deposit ichnofaunas, also labelled as Chelichnus ich-
nofacies have also yielded abundant small mammal tracks in associa-
tion with insect trails (Lockley et al., 2007). Krapovickas et al. (2016)
proposed five phases of colonization of desert paleonevironments
throughout the Phanerozoic of which the first two predate the coloni-
zation of continental interiors by tetrapods. This study, while important
in recognizing “recurrent patterns” and the diversity of desert pa-
leoenvironemts, focused mainly on invertebrate traces, many of which
represent infauna. In contrast, with the exception of tetrapod burrows,
most tetrapod traces are epifaunal trackways.

Here we describe tetrapod track assemblages reported from dune
and interdune facies developed in the Lower Cretaceous (Barremian)
Luohe Formation of Shaanxi province, China (Li, 2017). The assem-
blage, described here from the Cretaceous “eolianites” in Shaanxi
Province China, provide only the second report of Sarmientichnus,
which, as in Argentina, co-occurs with theropod and small mammal
tracks. This makes the Shaanxi ichnofauna exceptional for several
reasons. Not only is it a Cretaceous example of an assemblage most
similar to ones previously known only from the Jurassic, it is also the
first such association from Asia, and the first Asian ichnofauna to be
compared closely with the eolian ichnofacies: i.e., the Chelichnus ich-
nofacies. Moreover, we present evidence that ichnogenus Sarmien-
tichnus is attributable to a deinonychosaurid trackmaker. This inter-
pretation has both ichnotaxonomic and paleobiological implications for
our understanding of the distribution of deinonychosaurian track-
makers and track preservation potential in space and time.

2. Geological setting

The Ordos Basin, a large depositional basin in central and western
China occupying an area up to 90,000 km2, contains a relatively com-
plete Phanerzoic stratigraphic sequence, with only Silurian and
Devonian strata missing. In the center and western part of the basin,
continental deposits more than 1000 thick formed in Early Cretaceous
times (Xie et al., 2005). These rocks belongs to Zhidan Group and can
be primarily divided into the Yijun, Luohe, Huachi, Huanhe, Luo-
handong and Jingchuan formations from bottom to top (Ma, 1998). The
tracks described here come from the Luohe Formation, part of a large
continental “red bed” sequence detailed below.

An important vertebrate fossil assemblage, known as the
Psittacosaurus Fauna, occurs in the Jingchuan and Luohandong forma-
tions of the Ordos Basin. The following taxa are present:,chelonia
Ordosemys leios (Brinkman and Peng, 1993a), Sinemys gamera
(Brinkman and Peng, 1993b), S. brevispinus (Tong and Brinkman, 2013),
choristoderes Ikechosaurus sunailinae (Brinkman and Dong, 1993), cro-
codyliformes Shantungosuchus hangjinensis (Wu et al., 1994), cf. Ther-
iosuchus sp. (Wu et al., 1996), pterosaur Dsungaripteridae (Ji et al.,
2017), Cerapoda Psittacosaurus neimongoliensis, P. ordosensis (Russell
and Zhao, 1996), stegosaurs Wuerhosaurus ordosensis (Dong, 1993),
ankylosaurs Ankylosauria indet. (Ji et al., 2016), sauropod cf. Euhelopus
sp. (Hou et al., 2017), theropod Sinornithoides youngi (Russell and Dong,

1993; Currie and Dong, 2001), large size theropod teeth and Dro-
maeosauridae teeth (Ji et al., 2017), avian Otogornis genghisi (Hou,
1993), Cathayornis chabuensis (Li et al., 2008a), primitive mammal
Hangjinia chowi (Godefroit and Guo, 1999).

Articulated or complete vertebrate fossils from the Ordos Basin are
very rare, making species abundance and distribution difficult to de-
termine for this Early Cretaceous fauna. Therefore, abundant trace
fossils playing an important role in improving understanding of the
ecology of the vertebrate record. There are about 17 tracksites located
within the Luohandong and Jingchuan formations with over 1000
trackways reported, including saurischian tracks including the non-
avian theropod tracks Chapus and Asianopodus, the sauropod track
Brontopodus and the bird (avian theropod) track Tatarornipes (Li et al.,
2009, 2011; Lockley et al., 2002; Lockley et al., 2011a; Lockley et al.,
2014a, 2014b, 2014c). In addition, there are also non-avian theropod
tracks, Jialingpus, reported from the Luohe Formation in Xunyi County
at the southern margin of Ordos Basin (Xing et al., 2014).

Between September and November 2017 a survey of Danxia land-
forms terrain defined below (Peng, 2001), was undertaken in the study
area in northern Shaanxi, by scientists from the Shaanxi Geological
Survey Center. They found many dinosaur and other tetrapod tracks in
the Luohe Formation near Zhongji Town, Shenmu City, at the northeast
margin of Ordos Basin (Figs. 1, 2). These tetrapod tracks form assem-
blages (ichnofaunas) of a type never previously found in China, and
therefore have important paleoecological and ichnofacies implications.
Tang et al. (In press) briefly described these tracksites, but did not
provide morphologic details of the ichnites.

3. Stratigraphic context

The Luohe Group was established by Clapp and Fuller (1926) and
originally called the Luohe Sandstone, being defined as a loose massive
medium-grained cross-bedded sandstone, pink, pale yellow or bright
red in color. The studied section is that of (Clapp and Fuller, 1926). The
type section is beside the Luohe River, 40–55 km southeast of Yan'an
City, and extends northwest to an area near the Great Wall (Clapp and
Fuller, 1926). Ma (1998) redefined the Luohe Formation as a strati-
graphic sequence above the Anding Formation (or Yijun Formation)
and below the Huanhe Formation or Pleistocene strata. The unit com-
prises purple or gray purple thick-to-medium grained arkose inter-
bedded with siltstone and mudstone with locally interbedded con-
glomerate and shale. Large cross bedding can be seen in the sandstone
layers (Fig. 3), often indicating alternating paleowind directions (Jiang
et al., 2001).

In the present study area in the northeast margins of the Ordos
Basin, the Luohe Formation is ~63.8 m thick and generally shows an
angular unconformity with the Middle Jurassic Anding Formation
below (Fig. 3B). Locally such angular unconformity is not discernable
and the contact appears conformable. The Luohe Formation primarily
comprises medium-fine grained arkose interbedded with fine sand-
stone, siltstone or brick red silty mudstone which represent an alter-
nation of eolian and playa lake deposits of the type described by Jiang
et al. (2001, 2004), and discussed below.

In China such red bed sequences have been referred to as Danxia
landforms and defined, geomorphologically, as “red-colored sandstones
and steep cliffs… developed through long-term erosion [which have] in
recent years… been receiving international attention, [where] six ex-
amples in China became [part of] a UNESCO World Natural Heritage
[site] in 2010” (Zhang et al., 2011). According to Peng (2001), Huang
and Chen (2003) and Qi et al. (2005) good examples of Danxia land-
forms exist in northwestern China (Gansu and Shaanxi provinces). Most
represent Cretaceous deposits.

The geology of the Luohe Formation in the Danxia landform land-
scapes of northern Shaanxi Province (Fig. 1) has been described in some
detail by Jiang et al. (2001) with attention to paleowind indicators.
These authors measured more than 125 foreset orientations indicating
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alternating westerly and northeasterly wind directions in the early
phases of Luohe Formation deposition giving way to predominantly
westerly winds in the later stages. In a subsequent paper (Jiang et al.,
2004, p. 729) described the Luohe Formation as representing an “eolian
dominant” period with a duration representing at least the first, half
(eolian half) of a ~1Ma “I –grade” desert-lake cycle in which at least
three-four 103–105 a, II-grade “draa-wet-interdraa” cycles were identi-
fied. Draa can be taken to mean large scale accumulation of eolian sand
as in the original definition of Wilson (1973).

Based on Estheria records, from local playa lake facies, Li (2017)
suggest that the lower part of the Zhidan Group, is broadly correlative
with the Barremian Yixian Formation of western Liaoning (Chen, 1988;
Wan et al., 2013), with the Yijun, Luohe and Huanhe formations
yielding a middle Jehol biota.

Thus, the Ordos Basin is dominated by desert deposits interbedded
with multi-layer fluvio-lacustrine deposits, suggesting repeat desert
expansions and retreat during the Cretaceous. The Luohe period re-
presented the first heyday of desert deposition /expansion in this basin
during the Cretaceous (Xie et al., 2005; Jiang et al., 2001, 2004). The
horizontal bedding, low angle oblique bedding, mud cracks and rain-
drop imprints at these tracksites imply a shallow desert lake facies
deposit (Tang et al. (In press)) with an eolian-dominant setting, where
eolian dunes interfinger with interdune sand sheets (sensu Krapovickas
et al., 2016). Generally, the Ordos Basin was arid at this time and

dinosaurs and other animals likely gathered near desert shallow lakes.

4. Tracksite description

Tracks found in the Zhongji Town area are distributed along the east
bank of Gonggegou reservoir in Baodaoshili Village. There are three
dinosaur tracksites and two small tetrapod tracksites (Figs. 1 and 2)
within the 30 km2 of the Danxia landform landscape.

Site I (GPS: 39°10′28.82″N, 110° 2′50.81″E) yielded two tracks
(Fig. 4) from the thin layer of argillaceous siltstone near the base in the
lacustrine facies of the upper Luohe Formation. The track-bearing layer
also reveals mud cracks.

Sites II–V are located in purple-red, thin-bedded medium-fine
grained quartzose sandstone layers in playa facies of the upper Luohe
Formation. Site II (GPS: 39°10′13.49″N, 110° 2′13.46″E) yields 21 tri-
dactyl tracks (Fig. 5) and has hail and raindrop imprints in the track-
bearing layers. Site III (GPS: 39°10′12.58″N, 110° 2′10.67″E) and Site V
(GPS: 39°10′13.66″N, 110° 2′9.23″E) yield tracks made by small
quadrupeds (Figs. 6 and 7). To date, Site IV (GPS: 39°10′14.05″N, 110°
2′9.78″E) has yielded 16 didactyl tracks (Figs. 4, 7 and 8) and has
shallow current ripples, hail marks, raindrop imprints and invertebrate
traces in the track-bearing layers.

Fig. 1. Geographical setting showing the location of the Baodaoshili sites in northernmost Shaanxi Province, China. Area marked “Ji” indicates study area of Jiang
et al. (2001).

Fig. 2. Photograph of Baodaoshili site
III–V. Sites III and V yielded mamma-
liamorph trackways (Brasilichnium isp.)
from different layers, Site IV yielded
the didactyl trackway (Sarmientichnus)
BT-DT2.
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5. Methods

The low inclination of beds (~10–20° dip), at the main tracksite
where sites III-V are located (Fig. 2), facilitated close access to the
tracks and the making of chalk outlines, tracings, photographs and se-
lected latex molds. Once outlines of the tracks over the whole outcrop
had been chalked, five large sheets of transparent plastic were used to
trace most of the trackway segments. All transparent plastics are
scanned and made into an overall tracksite distribution map.

We obtained the following measurements of pes imprints and
trackways: Track length and width, rotation, pes - pes pace angulation,
step, stride and inner and outer trackway width. Trackways were
numbered BD-T, and BD-R with “BD” indicating the Baodaoshili
tracksite, “T” the theropod trackmaker, and “R” the early reptile/
quadrupedal trackmakers. In the case of these quadrupedal trackmakers
it is possible to estimate the glenoacetabular or body length using the
method of Leonardi (1987) (Fig. 6).

Two well-preserved in-situ didactyl theropod tracks BD-T2-R2 and
BD-T2-L8 were digitally photographed (18 and 17 photographs re-
spectively) from various perspectives under natural lighting conditions
using a Canon EOS 5D Mark III. Photographic jpg image files were
added to Agisoft Photoscan Professional Edition (version 1.2.6 build
2038 64 bit) to generate a scale-corrected model with sub-millimetre
resolution (0.34 and 0.29mm average linear distance between points
respectively) following the procedure adapted from Romilio et al.
(2017). The model was positioned to the centre of the cartesian co-
ordinate system using Meshlab (64bit_fp v2016.12; Cignoni et al.,
2008). Orthophotographic mosaic and ambient occlusion images were
obtained using CloudCompare (version 2.8.0). False-color elevation and
contoured images were made of the models using Paraview (version
5.0.0 64 bit) to visualize surface depth.

6. Description of trackways

6.1. Tridactyl tracks

The tridactyl dinosaur tracks described here include a continuously
preserved trackway segment of a medium sized theropod with 21
footprints (20 paces= 10 strides) designated as BD T1 (tracks R1–R11)
from Site II: Fig. 5. The tracks have mean lengths and widths of 13.3 cm
and 9.5 cm respectively (L/W ratio= 1.4): Table 1. Step and stride
lengths average 29.7 cm and 57.3 cm with a mean pace angulation of
154°. The mean digit divarication (II-IV) is 72° and the trackway shows
a marked turn to the left after track R7. As shown in Fig. 5 the distal
traces of digit III turn inward as is typical of many theropod tracks
(Thulborn, 1990). The tracks resemble small Eubrontes isp., but this
identification is tentative.

An isolated tridactyl track was recovered from Baodaoshili Site I
(Fig. 4 top), and designated as BD-TI1. The track is 14.5 cm long and
15.8 cm wide (L/W=0.9) with slender digit traces a wide divarication
(~110°). The digit III trace shows three phalangeal pad traces typical of
theropods. Although similar in size to the tracks in trackway BD-T1, the
morphology is quite different. Tracks with wide digit divarication and
slender digit traces characterize ichnogenera like Ornithomimipus, Ir-
enichnites, Columbosauripus (Sternberg, 1926, 1932) and Magnoavipes
assigned to ichnofamily Ornithomimipodidae (Lockley et al., 2011b).
The track is close in size, shape and L/W proportions to all three of the
latter ichnogenera, and differs only in having the digit traces more
strongly impressed and connected in the heel area: compare Fig. 4 with
Lockley et al. (2011b, Fig. 9). We therefore tentatively label the track
Magnoavipes isp. indet. As discussed below, the implication of this track
is that there was an ornithomimid-like trackmaker active during Luohe
Formation deposition, and that it was one of at least three theropod
morphotypes that inhabited the region at this time.

Fig. 3. A: Stratigraphic section showing position of track-bearing levels from Baodaoshili Sites, (F= feldspathic); B: schematic rendering of the stratigraphic re-
lationship between Upper Jurassic Anding Formation (J3A) and the Lower Cretaceous Luohe Formation (K1l), near tracksite; C: shows alternating foreset directions
attributed to alternating paleowind directions.
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6.2. Didactyl tracks

The didactyl dinosaur tracks described here, which frequently ap-
pear monodactyl include a continuously preserved trackway segment of
a medium sized theropod with 21 footprints (20 paces= 10 strides)
designated as BD-T2 (tracks L1–R8) from Site IV: Figs. 6–7. The tracks
have mean lengths and widths of 15.4 cm and 4.8.5 cm respectively (L/
W ratio= 3.3): Table 1. Step and stride lengths average 51.8 cm and
103.4 cm with a mean pace angulation of 177°. Only three tracks show
any sign of slight digit divarication, giving a low average of 24°.

6.3. Comparison of tridactyl and didactyl tracks and trackways

Almost every feature of trackways BD-T1 and BD-T2 is different,
except that based on footprint length the tracmkaers were similar in
size (FL 13.3 and 15.4 cm respectively). The trackmaker of BD-T1 was
clearly tridactyl with a relatively wide footprint (L/W 1.4) and short
step (29.7 cm) which averaged 2.23× FL, with a corresponsingly wide
straddle (low pace angulation=154°). In contrast the trackmaker of
BD-T2, appears to have been didactyl with a much narrower footprint
(L/W 3.3) and a longer step (51.8 cm) which averaged 3.36×FL, with
a correspondingly narrow straddle (pace angulation 177°). In short, the
BD-T7 trackmaker created a much narrower trackway than the BD-T1

Fig. 4. Photograph (A) and interpretative outline drawing (B) of tridactyl track BD-TI1 from Baodaoshili Site I. Photograph (C, F), 3D image (D, G) and interpretative
outline drawing (E, H) of two didactyl tracks from BD-T2 trackway from Baodaoshili Site IV. The gray anterior triangle indicated the weak mesaxony.
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trackmaker with steps averaging 50% longer. This could in part be a
behavioral difference related to speed, but given the appraent differ-
ences in foot morphology the differences appear to also reflect track-
maker foot anatomy. However, as discussed below the differences due

to substrate must also be considered, especially in the case of BD-T2,
labelled Sarmientichnus isp., which appears to represents a functionally
monodactyl trackmaker (see Table 2).

Fig. 5. Photographs (A, C) and Interpretative outline drawings (B, D) of theropod trackway BD-T1 and the well-preserved BD-T1-R6 from Baodaoshili Site II. The gray
anterior triangle indicated the weak mesaxony.
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6.4. Quadruped tracks

The trackway shown in Fig. 8 consists of an almost continuous series
of 25 partial or complete left manus-pes sets, and the same number of
right manus-pes sets. The central part of the trackway, between LM 7
and LM17 shows a continuous sequence of steps in which manus and
pes tracks are clearly differentiated. However the proximal part of the
trackway (between LP1 and RP6) as well as the distal part (between RP
17 and RP 25) is less complete with the smaller manus tracks not
consistently visible in all steps.

Some pes tracks show short, indistinct toe traces, (e.g., RM11, shows

3 toe traces and RP12 and LP 13 each show 4) but in general these are
not discernable. Most tracks are about as wide or wider than long (mean
pes L and pes W, 1.1 cm and 1.6 cm respectively: L/W 0.78: mean
manus L and W 1.0 and 1.3 respectively L/W 0.81). Manus and pes pace
angultion is high (69° and 90° respectively). Step and strides short: 5.4
and 6.2 cm for pes and 4.2 and 6.2 cm for manus.

In addition to Trackway BD-R1 we have identified four other
trackway segments (Fig. 6) assigned to Brasilichnium. The longest of
these trackways, designated BD-R2 has pes tracks 2.2 cm long and
2.8 cm wide (L/W 0.79), with manus tracks 1.6 cm long and 2.0 cm
wide (L/W 0.80). Thus, it represents a trackmaker with feet with similar

Fig. 6. Photographs (A, C) and interpretative outline drawings (B, D) of the mammaliamorph trackway Brasilichnium isp. BD-R1 and the well-preserved BD-R1-RP8 to
RP16 from Baodaoshili Site III. D also shows estimated glenoacetabular (G-A) distance based on the methods of Leonardi (1987), here shown as red line parallel to
trackway axis, which connects the mid-points between left and right manus and pes tracks made in same step cycle. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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proportions to the BD-R1 trackmaker but on average 71% larger (range
of size difference is 57–100% depending measurement used).

6.5. Track database

The aforementioned tracks and trackways compile into a small da-
tabase (crude census) of the total number of track making individuals
active in the area, at two different times, represented by two different
stratigraphic levels (Fig. 3A). This total amounts to three theropod in-
dividuals, each apparently representing a different morphotype, and up
to five mammaliamorph trackmakers. Two of the mammaliamorph
trackmakers were demonstrably different individuals based on size
differences. Thus, a total of up to eight individuals registered tracks,

and these represent a diversity of four types (3 theropods and 1 mam-
maliamorph). Based on tracks the theropods can all be described as
medium sized and the mammaliamorphs as small.

7. Discussion

7.1. Implications of Luohe vertebrate track assemblages

In order to fully understand the significance of the Shaanxi assem-
blages described here, it is necessary to introduce two topics. The first is
specific, and deals with Argentinian track assemblages from the Matilde
Formation which are among the most distinctive and interesting cur-
rently known from the Mesozoic. The assemblages include three rare

Fig. 7. Interpretative outline drawings of the didactyl trackway BD-T2 of Baodaoshili Site IV and the mammaliamorph trackways BD-R2-R5 of Baodaoshili Site V.
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ichnotaxa, originally described by Casamiqiela (1964) that remain rare
or virtually unknown after more than 50 years of advance in the study
of tetrapod tracks. These tracks include the exceptionally well-pre-
served mammalian track Ameghinichnus patagonicus Casamiqiela, 1964,
and the purported small dinosaur tracks Sarmientichnus scagliai
Casamiqiela, 1964, Wildeichnus navesi Casamiqiela, 1964, and Dela-
torrichnus goyenechei Casamiqiela, 1964. S. scagliai is of special interest
in this srudy and to theropod ichnotaxonomy in general. The Argenti-
nian assemblage, also includes exquisitely preserved insect tracks
(Hexapodichnus) described by De Valais et al. (2003) which help con-
stitute what De Valais (2010, p. 28–29) called an ichnofauna “excep-
tional in both diversity and abundance”… [and] “the most diverse and
abundant one coming from rocks of equivalent age anywhere in South
America.” The track-bearing layers form part of a volcaniclastic se-
quence of Middle Jurassic age consisting of “ashfall, reworked tuffs,
welded tuffs, tuffaceous siltstones and fine-grained sandstones,” (op.
cit., p. 29).

The second relevant topic to our understanding of the Luohe as-
semblages is the general subject of the desert, but specifically eolian,
dune ichnofacies: i.e., Chelichnus ichnofacies (Hunt and Lucas, 2007;
Krapovickas et al., 2016). This ichnofacies and its component sub-ich-
nofacies, ichnocoenoses or ichnofaunas such as the Brasilichnium ich-
nofacies (Lockley et al., 1994; Hunt and Lucas, 2007; Lockley, 2007)
has been recognized throughout much of the Phanerozoic and much
discussed as representative of desert, dune facies paleoecology.

However, it has not previously been recognized or discussed in the
context of Asian ichnofaunas.

7.2. Sarmientichnus ichnotaxonomy revisited

The evidence presented here implies that the Sarmientichnus scagliai
is an example of an extramorphological ichnotaxon and does not re-
present a monodactyl trackmaker as originally inferred by Casamiqiela
(1964). Dinosaurs with monodactyl feet (pes) are not known from the
body fossil record. The second implication is that Sarmientichnus is
likely of deinonychosaurian affinity, representing the only well-known
group of dinosaurian trackmakers with didactyl footprints. The third
implication is that didactyl deinonychosaurian-like trackmakers regis-
tered footprints as early as the Middle Jurassic, at least in Argentina.
The forth implication is that Sarmientichnus could be claimed as a
subjective senior synonym of other later named ichnogenera proposed
to name didactyl deinonychosaurian tracks.

According to Casamiqiela (1964) the holotype of S. scagliai is re-
presented by a trackway consisting of four footprints (two strides), with
footprint lengths (L) and widths (W) of 130mm and 39mm respectively
(L/W 3.33). De Valais (2010) re-described Sarmientichnus scagliai based
on a larger sample of 37 tracks comprising 8 trackways. She inferred
(op. cit. p. 35) that “the more complete tracks” display digit I and III
impressions forming a continuous, single, single linear depression” but
does not mention traces of digits II or IV. Given that the angle between

Fig. 8. Photographs and interpretative outline drawings of the didactyl trackway BD-T2 of Baodaoshili Site IV. Bottom right shows multiple overlays of track outlines.
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traces inferred to represent digits I and III is reported as “close to 170°”
we take this to mean that the inferred digit I trace is a posteriorly di-
rected hallux. She also mentions that “some tracks display a lateral
deformation… of the sediment by the movement of digit III…” She
accepted the inference of Casamiqiela (1964) that the tracks are ther-
opodan and noted that some trackways show elongate “straight narrow
marks” that “arise from the caudal tips of the footprints” but never from
the end of the digit III trace. Nevertheless, they appear to be toe drag
marks, which Melchor et al. (2004) considered might have been made
by digit II and/or IV, but which De Valais (2010) infers to have been
made by digit I. She concluded that no known theropod “has a pedal
morphology matching Sarmientichnus tracks.” (op. cit. p. 36). These
inferences raise two questions: 1) what was the morphology of the
Sarmientichnus trackmaker foot: i.e., how many digits did it have, and
how where they configured, and 2) are the tracks sufficiently well
preserved to allow ichnologists to reconstruct foot morphology.

Coria and Paulina Carabajal (2004, p. 394) described Casamique-
laichnus navesorum, also from the Middle Jurassic La Matilde Formation,
as representing a trackmaker “apparently with mono- or didactyl
functional pedal anatomy. Footprint with prominence of central digit
and great reduction of lateral digits marks.” The tracks resemble S.
scagliai, as noted by Coria and Paulina Carabajal (2004), but are smaller
(between 29 and 59mm long), and at the time of their study these

authors considered the toe drag traces an important feature which
distinguished C. navesorum from S. scagliai. Interestingly they record
angles of divergence between digit traces III and IV, for two tracks from
the same trackway, as 20° and 32° (mean 26°) They also include mea-
surements for a third, clearly tridactyl track, from a different trackway
which they report as showing an angle of 20° between digits traces III
and IV and an angle of 32° between digit traces II and III. However, it
should be noted that the Matilde Formation track assemblages include
well preserved theropod tridactyl tracks named Wildeichnus, and that
the track they describe and illustrate as tridactyl might be an example
of Wildeichnus, not the ichnotaxon they named C. navesorum.

De Valais (2010) considered C. navesorum a subjective junior sy-
nonym of S. scagliai, inferring that Sarmientichnus remains a mono-
specific ichnogenus. We agree with this synonymy conclusion sup-
ported by de Valais' study of a larger sample of S. scagliai with multiple
toe drag traces. However, we note that the weight of evidence suggests
that S. scagliai was not made by a truly monodactyl trackmaker, and
that there is evidence to support a didactyl pes morphology. De Valais,
does not say this explicitly, but implies the same by synonymizing C.
navesorum with S. scagliai without refuting the claims that the former
include traces of digit IV. However, we also stress that both the South
America ichnotaxa exhibit sub-optimal preservation as evident from
published photographs and comments by Coria and Paulina Carabajal
(2004) and De Valais (2010), and the uncertainly about the number and
configuration of digit traces.

Given our agreement that S. scagliai has ichnotaxonomic priority

Table 1
Measurements of theropod tracks from Baodaoshili tracksite, Shaanxi Province,
China.

Number MLcm MW cm II–IV° PL cm SL cm PA° L/W

BD-T1-R1 15.5 10.2 82 25.5 48.5 148 1.5
BD-T1-L1 15.0 10.0 76 25.0 51.0 153 1.5
BD-T1-R2 14.0 8.5 63 27.5 54.0 146 1.6
BD-T1-L2 15.0 10.3 70 29.0 56.0 159 1.5
BD-T1-R3 13.5 10.2 70 28.0 56.5 150 1.3
BD-T1-L3 13.5 9.5 69 30.5 60.5 180 1.4
BD-T1-R4 12.7 11.0 83 30.0 58.5 159 1.2
BD-T1-L4 13.5 10.0 67 29.5 58.0 165 1.4
BD-T1-R5 13.7 9.2 60 29.0 55.0 158 1.5
BD-T1-L5 12.2 10.5 84 27.0 47.0 180 1.2
BD-T1-R6 12.5 10.0 69 20.0 41.0 162 1.3
BD-T1-L6 13.5 10.0 69 21.5 44.5 115 1.4
BD-T1-R7 13.0 9.5 76 31.0 61.5 165 1.4
BD-T1-L7 13.0 10.0 87 31.0 57.0 124 1.3
BD-T1-R8 14.5 8.5 61 33.5 65.5 143 1.7
BD-T1-L8 14.5 10.0 70 35.5 65.3 138 1.5
BD-T1-R9 13.5 8.0 69 34.5 69.0 166 1.7
BD-T1-L9 12.5 9.0 68 35.0 69.0 156 1.4
BD-T1-R10 12.8 7.0 63 35.5 70.0 156 1.8
BD-T1-L10 11.0 9.0 75 36.0 – – 1.2
BD-T1-R11 10.5 9.5 77 – – – 1.1

Mean 13.3 9.5 72 29.7 57.3 154 1.4
BD-T2-L1 19.5 6.5 – 51.0 98.0 164 3.0
BD-T2-R1 13.5 5.0 – 48.0 98.5 180 2.7
BD-T2-L2 14.0 5.7 – 50.5 103.5 180 2.5
BD-T2-R2 15.0 4.3 – 52.5 105.0 180 3.5
BD-T2-L3 14.5 5.5 21 52.5 105.0 180 2.6
BD-T2-R3 15.7 4.3 – 52.5 107.0 180 3.7
BD-T2-L4 20.5 5.0 – 54.5 107.5 180 4.1
BD-T2-R4 18.5 6.5 32 53.0 103.0 169 2.8
BD-T2-L5 15.0 3.7 – 50.5 105.0 180 4.1
BD-T2-R5 13.0 5.0 – 54.5 105.0 169 2.6
BD-T2-L6 16.0 4.6 – 51.0 104.0 180 3.5
BD-T2-R6 16.0 3.4 – 52.5 93.5 180 4.7
BD-T2-L7 14.5 3.3 – 40.0 98.0 180 4.4
BD-T2-R7 8.7 5.5 – 57.0 115.0 180 1.6
BD-T2-L8 14.5 5.0 20 57.5 – – 2.9
BD-T2-R8 16.7 3.7 – – – – 4.5
Mean 15.4 4.8 24 51.8 103.4 177 3.3

Abbreviations: ML: Maximum length; MW: Maximum width (measured as the
distance between the tips of digits II and IV); II–IV: angle between digits II and
IV; PL: Pace length; SL: Stride length; PA: Pace angulation.; L/W is di-
mensionless of ML/MW.

Table 2
Measurements (in cm and °) of mammaliamorph tracks from Baodaoshili
tracksites, Shaanxi Province, China.

Number ML cm MW cm PL cm SLcm PA° L/W

BD-R1-RP8 0.07 0.19 0.51 0.71 83 0.37
BD-R1-LP9 0.13 0.15 0.56 0.74 86 0.87
BD-R1-RP9 0.06 0.20 0.52 0.71 81 0.30
BD-R1-LP10 0.11 0.18 0.57 0.64 73 0.61
BD-R1-RP10 0.12 0.19 0.50 0.40 47 0.63
BD-R1-LP11 0.14 0.14 0.50 0.69 66 1.00
BD-R1-RP11 0.12 0.06 0.72 0.89 94 2.00
BD-R1-LP12 0.16 0.14 0.48 0.41 55 1.14
BD-R1-RP12 0.14 0.15 0.40 0.42 51 0.93
BD-R1-LP13 0.07 0.19 0.53 0.51 54 0.37
BD-R1-RP13 0.07 0.21 0.58 0.55 58 0.33
BD-R1-LP14 0.10 0.18 0.56 0.63 69 0.56
BD-R1-RP14 0.08 0.17 0.55 0.65 70 0.47
BD-R1-LP15 0.08 0.15 0.58 0.65 70 0.53
BD-R1-RP15 0.13 0.08 0.55 0.68 72 1.63
BD-R1-LP16 0.07 0.17 0.60 – – –
BD-R1-RP16 0.18 0.17 – – – –

Mean 0.11 0.16 0.54 0.62 69 0.78
BD-R1-RM8 0.07 0.14 0.44 0.75 115 0.50
BD-R1-LM9 0.06 0.09 0.45 0.74 105 0.67
BD-R1-RM9 0.08 0.2 0.48 0.73 100 0.40
BD-R1-LM10 0.11 0.07 0.47 0.66 101 1.57
BD-R1-RM10 0.1 0.11 0.38 0.55 85 0.91
BD-R1-LM11 0.08 0.14 0.43 0.7 85 0.57
BD-R1-RM11 0.07 0.17 0.59 0.81 111 0.41
BD-R1-LM12 0.1 0.09 0.38 0.56 98 1.11
BD-R1-RM12 0.1 0.16 0.36 0.47 84 0.63
BD-R1-LM13 0.11 0.13 0.34 0.46 76 0.85
BD-R1-RM13 0.1 0.13 0.4 0.53 90 0.77
BD-R1-LM14 0.11 0.13 0.35 0.54 107 0.85
BD-R1-RM14 0.09 0.12 0.32 0.58 102 0.75
BD-R1-LM15 0.08 0.15 0.42 0.59 100 0.53
BD-R1-RM15 0.1 0.17 0.35 0.67 107 0.59
BD-R1-LM16 0.14 0.1 0.48 – – 1.40
BD-R1-RM16 0.14 0.11 – – – 1.27
Mean 0.10 0.13 0.42 0.62 98 0.81

Abbreviations: ML: Maximum length; MW: Maximum width (measured as the
distance between the tips of digits II and IV); PL: Pace length; SL: Stride length;
PA: Pace angulation.; L/W is dimensionless of ML/MW.
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over C. navesorum (De Valais, 2010), the question arises “Does Sar-
mientichnus scagliai have priority over any other later named didactyl
ichnotaxa? In order to demonstrate that Sarmientichnus scagliai
Casamiqiela, 1964 is a valid senior synonym of later named deino-
nychosaurian trackmakers like Velociraptorichnus sichuanensis Zhen
et al., 1994, or Dromaeosauripus hamanensis Kim et al., 2008, it would
be necessary to prove no important or diagnostic morphological dif-
ferences between these ichnotaxa. In addition, it would be important to
show that there are no differences attributable to extramorphological
factors: i.e., preservation. It is clear that there is too much uncertainty
about the morphology represented by Sarmientichnus scagliai tracks to
synonymize them with any of the later named ichnotaxa. Moreover,
there is abundant evidence that careful study of Sarmientichnus burdens
it with the label of an extramorphological ichnotaxon, which despite
probably representing a didactyl trackmaker, as implied by the syno-
nymizing of C. navesorum (Coria and Paulina Carabajal, 2004) with S.
scagliai (De Valais, 2010) and our use of the label Sarmientichnus isp, for
the Shaanxi material, type Sarmientichnus does not show any completely
unambiguous diagnostic features, and for this reason could be con-
sidered a nomen dubium, Thus, the Sarmientichnus label implies extra-
morphological preservation, not monodactyl trackmaker morphology,
and could henceforward be referred to as “Sarmientichnus” to identify it
as a form ichnotaxon. For this reason, we should not give Sarmientichnus
priority over later named ichnotaxa in any formal sense. It is however,
of paleobiological and paleogeographical interest to use the Shaanxi
occurrence to show the possible affinity of Sarmientichnus to ichnotaxa
of deininychosaurian affinity.

Apesteguía et al. (2011) reported “probable” large-sized
(16.4–28.8 cm long) dromaeosaurid tracks (labelled Dromaeopodus?
isp.) from the Upper Cretaceous (Campanian) of Bolivia, and raised the
question of whether this was the first ichnological evidence dromaeo-
saurids from South America. If correct the interpretation is consistent
with Late Cretaceous records of dromaeosaurid body fossil records from
the region. However, without refuting, the claim it is somewhat com-
promised by the “poor to moderate” quality preservation which these
authors admit, in some cases showing the “impressions of digits III and
IV joined into a single mark, with no evidence at all of digit II”
(Apesteguía et al., 2011, p. 664). Thus, despite being larger than Ar-
gentinian and Chinese Sarmientichnus, in some cases even these large
tracks appear monodactyl. Given that we here consider the possibility
that Sarmientichnus isp. might be of dromaeosaurid affinity, at least four
conclusions arise: i) there may be two dromaeosaurid ichnites (ichno-
genera) represented in South America: Sarmientichnus from the Middle
Jurassic and Dromaeopodus? from the Late Cretaceous, ii) no Early
Cretaceous dromaeosaurid tracks are known from the region, despite
being most abundant during this epoch in other regions, iii) both ich-
nogenera are poorly preserved and may appear mondactyl, and iv) the
dromaeosaurid affinity of these ichnites is uncertain and so open to
dispute.

7.3. The possible deinonychosaurian affinity of Sarmientichnus

Working from the latest studies of S. scagliai (De Valais, 2010) we
infer that the trackmaker was functionally didactyl. Formal ichno-
taxonomic studies of Cretaceous deinonychosaurid tracks recognize
four ichnogenera all based on type material from the Lower Cretaceous
of Asia. These, with their respective type species, are: Velociraptorichnus
sichuanensis (Zhen et al., 1994) Dromaeosauripus hamanensis (Kim et al.,
2008), Menglongipus sinensis (Xing et al., 2009) and Dromaeopodus
shandongenis (Li et al., 2008a, 2008b). In addition, new ichnospecies of
Dromaeosauripus have been named as D. jinjuensis (Kim et al., 2012) and
D. yongjingensis (Xing et al., 2013a, 2013b), and a new ichnospecies of
Velociraptor was also named as V. zhangi (Xing et al., 2015a, 2015b): see
Lockley et al. (2016a) for review. All these ichnotaxa are based on well-
preserved trackways most of which show digit proportions and in some
cases digital pad impressions quite clearly. In short all these Lower

Cretaceous trackways from Asia, are attributed with a high degree of
confidence to deinonychosaurid trackmakers, as are two other Lower
Cretaceous track and trackway sites yielding Dromaeosauripus isp.
indet., from North America (Lockley et al., 2014a, 2016a, 2016b), and a
site from Germany that yields unnamed deinonychosaurid tracks
(Lubbe et al., 2009; Lockley et al., 2016a). Late Cretaceous deini-
nychosaurian track reports (Apesteguía et al., 2011; Lockley et al.,
2016a) are rare, of questionable quality and outside the scope of this
study.

Given this abundance of evidence for deinonychosaurian track-
makers in the Lower Cretaceous of Asia, it is not surprising to find the
site reported here from the Luohe Formation of Shaanxi represents
another Lower Cretaceous didactyl track occurrence, implying a dei-
nonychosaurian trackmaker. However, in the 16-footprint trackway
described here the majority of tracks appear to register only one digit
trace (digit III), thus closely resembling Sarmientichnus (sensu
Casamiqiela, 1964; De Valais, 2010) and appearing to represent a
“monodactyl” trackmaker. It is only the clearly didactyl track L8 which
falsifies this interpretation and indicates, apparently proves, a didactyl
trackmaker. This evidence implies the trackmaker was a deinonycho-
saur with feet consistent with the size and morphology of the track-
makers of various Velociraptorichnus and Dromaeosauripus ichnospecies.

This evidence helps refute the suggestion that the Sarmientichnus
scagliai represented a monodactyl trackmaker. It also weakens the ori-
ginal diagnosis of the ichnospecies. As already suggested by the
Sarmientichnus trackmaker was probably functionally didactyl. Had
these authors suggested a deinonychosaurian affinity, they could have
claimed the first South American occurrence, before the report of
Apesteguía et al. (2011).

Although not explicitly stated by Coria and Paulina Carabajal
(2004) and tacitly accepted by De Valais (2010), we infer that the
Sarmientichnus trackmaker may have carried digits III and IV close to-
gether when traversing soft substrates, causing didactyl trackmakers to
register digit III and IV traces as a single impression (cf. Apesteguía
et al., 2011, p. 664). As noted by Gatesey et al. (1999) theropod di-
nosaurs adducted their digits towards the mid line (digit III) especially
during the kick off or extraction phase of the step cycle when traversing
soft substrates.

The question of the affinity of Sarmientichnus has already raised
many puzzling questions and uncertain inferences: i.e., it could re-
present a functionally monodactyl, (Casamiqiela, 1964; De Valais,
2010) didactyl or tridactyl (Coria and Paulina Carabajal, 2004), or an
extramorphological expression of any one of these trackmaker
morphologies. If didactyl as inferred here, Sarmientichnus likely re-
presents a functionally didactyl Jurassic deinonychosaurian, as the
skeletal record would allow (Xu and Zhang, 2005). Postulating a Lower
Cretaceous deinoychosaurian trackmaker in this part of China is en-
tirely consistent with the growing deinonychosaurian track record. For
example, as reviewed by Lockley et al. (2016a), there is a published
record of 10 known deinonychosaurian tracksites in the Lower Cre-
taceous of China (Xing et al., 2009; Xing et al., 2013a, 2013b; Xing
et al., 2015a, 2015b; Xing et al., 2016a, 2016b; Lockley et al., 2016a),
to which we must add the present site and a site in Shandong Province
(Xing et al., 2018) making a total of 12 Chinese sites from the Lower
Cretaceous. Moreover, troodontid fossils have previously been reported
from the area (Russell and Dong, 1993; Currie and Dong, 2001), as well
as teeth of small dromaeosaur (Ji et al., 2017).

7.4. Brasilichnium, distribution and mammaliamorph affinities of
Brasilichnium

Brasilichnium, originally named from the eolian Botucatu Formation
of Brazil (Leonardi, 1981, 1994; Fernandes and Carvahlo, 2008) has
traditionally be attributed to a mammaliamorph of unknown taxonomic
affinity. The tracks have also traditionally been dated as Jurassic, with
the inference that the trackmakers were likely derived therapsids rather
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than true mammals (Mammalia). Tracks labelled Brasilichnium are
abundant in the eolian Botucatu Formation, but absent, rare or little
known from other facies. In North America Brasilichnium is abundant in
the Lower Jurassic eolian formations of the Glen Canyon Group
(Lockley, 2011), but unknown or rare in most non-eolian facies, al-
though it may occur in localized interdune or playa deposits within
widespread eolian facies (Lockley et al., 2014b, Fig. 15). In short, al-
most all North and South American occurrences are associated with
eolian or dune facies, making it one of the more facies-specific or facies-
faithful ichnogenera known. In this regard Chelichnus, formerly Lao-
porus in older literature (Gilmore, 1926, 1927, 1928), which is mor-
phologically similar to Brasilichnium (Lockley et al., 2004a, 2004b) is
also highly facies-specific and almost exclusively found in eolian facies.
The Baodaoshili occurrence of Brasilichnium is not only the first in
China, but also in all of Asia. This is also the first Asian report of an
ichnofauna in eolian /desert facies.

As with many track morphotypes from eolian facies, fine detail is
often lacking. The detailed morphological differences between the
manus and pes in Brasilichnium has proven difficult to understand be-
yond recognizing that the manus is and generally situated anterior to
the pes if not overlapped (Lockley, 2011, and references therein).
Therapsid body fossils known from the area include the Eutriconodont
Hangjinia (Godefroit and Guo, 1999).

7.5. Paleoecological implications

Based on the trackway descriptions presented above, the three
theropod ichnotaxa, tentatively labelled (with likely theropod track-
maker groups) as Sarmientichnus isp. (deinonychosaurid), small
Eubrontes isp. (indeterminate theropod), and Magnoavipes isp. (or-
nithomimisaurid-like theropod), the Luohe ichnofauna contained quite
a diverse theropod fauna, recognizable from a small sample. Based on
the footprint lengths of these trackmakers (15.4, 13.3, and 14.5 cm
respectively) they were all relatively small animals. Using a footprint
length-hip height ratio of 1:4.5 as proposed by Thulborn (1990) for
small theropods these animals stood between only ~60 and ~70 cm at
the hip. i.e., they were turkey sized. Likewise, the mammaliamorph
trackmakers were small animals no larger than small house cats, with
an estimated glenoacetabular length of ~8.5 cm based on the method
Leonardi (1987), applied to mammaliamorph trackmakers. Such a track
assemblage is consistent with a desert ecosystem dominated by small
carnivorous tetrapods. The co-occurrence of Brasilichnium isp., a
mammaliamorph track, with theropod tracks, including Sarmientichnus
isp., is strongly reminiscent of the Brasilichnium ichnofacies (sensu
Lockley et al., 1994), also referred to as the Chelichnus ichnnofacies
(sensu Hunt and Lucas, 2007) and the eolian or evolving desert ich-
nofacies (sensu Krapovickas et al., 2016), which these authors sub-
divide into subfacies: i) eolian dunes, interdunes and sand sheets, ii)
wet interdunes, and iii) playa lakes. These various facies overlap to
varying degrees (Hunt and Lucas, 2007; Lockley, 2007; Krapovickas
et al., 2016), and may yield similar tetrapod ichnofaunas.

8. Conclusions

The Baodaoshili track assemblages are the first reported from an
“eolian dominant” desert facies in China, and in fact from all of Asia.
Some of the localized track-bearing layers may be classified as inter-
dune or playa deposits. However, the co-occurrence of Brasilichnium
isp., a mammaliamorph track, with theropod tracks, including
Sarmientichnus isp., is strongly reminiscent of the eolian, dune or desert
ichnofacies, referred to by some authors as the Brasilichnium ichnofacies
or the Chelichnus ichnnofacies.

The occurrence of Sarmientichnus isp., previously described as a
monodactyl track, is the first report beyond the Sarmientichnus type
locality in the Jurassic of Argentina. However, it is well known that the
preservation of this ichnotaxon in the type area is suboptimal, and

difficult to understand. Moreover, as we show here, the trackmakers
were didactyl at least in the case of the Chinese occurrences and some
of the Argentinian sites, and so most likely of deinonychosaurian affi-
nity. This interpretation implies a) that Sarmientichnus is an extra-
morphological “form” ichnotaxon of dubious utility, b) that didactyl
trackmakers were active in the Middle Jurassic in South America, as
global body fossil occurrences allow, and c) that we can add the
Baodaoshili site, as the 12th deinonychosaurian occurrence, to the
growing list of deinonychosaurid tracksites in the Lower Cretaceous of
China.
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